# STEP MATHEMATICS 2 <br> 2020 <br> Worked Solutions 

## STEP 2: BRIEF SOLUTIONS

|  | Only penalise missing +c once in parts (i) and (ii) |
| :---: | :---: |
| 1(i) | $\int \frac{1}{x^{\frac{3}{2}}(x-1)^{\frac{1}{2}}} \mathrm{~d} x=\int \frac{(1-u)^{2}}{u^{\frac{1}{2}}} \frac{1}{(1-u)^{2}} \mathrm{~d} u$ <br> Must include attempt at $\frac{d u}{d x}$ (or $\frac{d x}{d u}$ ) |
|  | $=2 u^{\frac{1}{2}}$ |
|  | $=2\left(\frac{x-1}{x}\right)^{\frac{1}{2}}+c$ |
| 1(ii) | Let $x-2=s$ |
|  | Then $\int \frac{1}{(x-2)^{\frac{3}{2}}(x+1)^{\frac{1}{2}}} \mathrm{~d} x=\int \frac{1}{s^{\frac{3}{2}}(s+3)^{\frac{1}{2}}} \mathrm{~d} s$ |
|  | $\text { Let } s=\frac{3}{u-1}$ |
|  | $\int \frac{1}{s^{\frac{3}{2}}(s+3)^{\frac{1}{2}}} \mathrm{~d} s=\int \frac{(u-1)^{2}}{3^{2} u^{\frac{1}{2}}} \frac{-3}{(u-1)^{2}} \mathrm{~d} u=-\frac{2}{3} u^{\frac{1}{2}}$ |
|  | $=-\frac{2}{3}\left(\frac{s+3}{s}\right)^{\frac{1}{2}}=-\frac{2}{3}\left(\frac{x+1}{x-2}\right)^{\frac{1}{2}}+c$ |
| 1(iii) | Let $x=\frac{1+u}{u}$ <br> Allow substitution leading to two algebraic factors in the denominator. |
|  | $\int_{2}^{\infty} \frac{1}{(x-1)(x-2)^{\frac{1}{2}}(3 x-2)^{\frac{1}{2}}} \mathrm{~d} x=\int_{1}^{0} \frac{u^{2}}{(1-u)^{\frac{1}{2}}(3+u)^{\frac{1}{2}}} \cdot\left(\frac{-1}{u^{2}}\right) \mathrm{d} u$ <br> If done through a sequence of substitutions: <br> a further substitution leading to a square root of a quadratic as the denominator. |
|  | $=\int_{0}^{1} \frac{1}{\left(3-2 u-u^{2}\right)^{\frac{1}{2}}} \mathrm{~d} u$ |


|  | $=\int_{0}^{1} \frac{1}{\left(4-(1+u)^{2}\right)^{\frac{1}{2}}} \mathrm{~d} u$ |
| :--- | :--- |
|  | $=\left[\arcsin \left(\frac{1+u}{2}\right)\right]_{0}^{1}$ |
|  | $=\frac{1}{2} \pi-\frac{1}{6} \pi=\frac{1}{3} \pi$ |


| 2(i) | $\frac{1-k y}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{k x-1}{x}$ |
| :---: | :---: |
|  | $\ln \|y\|-k y=k x-\ln \|x\|+c$ |
|  | Hence, $\ln \|x y\|=k(x+y)+c$ |
|  | $x y=\frac{1}{4}\left[(x+y)^{2}-(x-y)^{2}\right]=A e^{k(x+y)}$ |
|  | $C_{1}$ is $(x-y)^{2}=(x+y)^{2}-2^{x+y}$ |
|  | $C_{2}$ is $(x-y)^{2}=(x+y)^{2}-2^{x+y+4}$ |
|  | In both cases, the equation is invariant under $(x, y) \mapsto(y, x)$, so symmetrical in $y=x$. |
| 2(ii) |  |
|  | Graphs: Correct shapes of curves |
|  | Graphs: Intersections at (2,4) and (4,16) |
|  | $(x-y)^{2} \geq 0$, so $(x+y)^{2}>2^{x+y}$ |
|  | Therefore, $(x+y)$ must lie between 2 and 4 |
|  |  |
|  | Graph: Symmetry about $y=x$ |
|  | Graph: Closed curve lying between $x+y=3 \pm 1$ |
|  | Graph: Passes through (1,1) and ( 2,2 ) |


| 2(iii) | Sketches of $y=x^{2}$ and $y=2^{x+4}$ <br> $x^{2}>2^{x+4}$ only when $x<-2$. |
| :---: | :--- |
|  |  |
|  | Graph: Symmetry about $y=x$ |
|  | Graph: Passes through $(-1,-1)$ |
|  | Graph: $y \rightarrow 0$ as $x \rightarrow \infty, y \rightarrow-\infty$ as $x \rightarrow 0$ |


| 3(i) | Suppose, $\exists k$ : $2 \leq k \leq n-1$ such that $u_{k-1} \geq u_{k}$, but $u_{k}<u_{k+1}$ |
| :---: | :---: |
|  | Since all of the terms are positive, these imply that $u_{k}^{2}<u_{k-1} u_{k+1}$, so the sequence does not have property $L$. |
|  | Therefore, if the sequence has property $L$, once a value $k$ has been reached such that $u_{k-1} \geq u_{k}$, it must be the case that all subsequent terms also have that property (which is the given definition of unimodality). |
| 3(ii) | $u_{r}-\alpha u_{r-1}=\alpha\left(u_{r-1}-\alpha u_{r-2}\right)$, so $u_{r}-\alpha u_{r-1}=\alpha^{r-2}\left(u_{2}-\alpha u_{1}\right)$ |
|  | $u_{r}^{2}-u_{r-1} u_{r+1}=u_{r}^{2}-u_{r-1}\left(2 \alpha u_{r}-\alpha^{2} u_{r-1}\right)=\left(u_{r}-\alpha u_{r-1}\right)^{2} \text { for } r \geqslant 2$ |
|  | The first identity shows that $u_{r}>0$ for all $r$ if $u_{2}>a u_{1}>0$. |
|  | Since the right hand side of the second identity is always non-negative, the sequence has property $L$, and is hence unimodal. |
| 3(iii) | $u_{1}=(2-1) \alpha^{1-1}+2(1-1) \alpha^{1-2}=1$, which is correct. <br> $u_{2}=(2-2) \alpha^{2-1}+2(2-1) \alpha^{2-2}=2$, which is correct. |
|  | Suppose that: $\begin{aligned} & u_{k-2}=(4-k) \alpha^{k-3}+2(k-3) \alpha^{k-4}, \text { and } \\ & u_{k-1}=(3-k) \alpha^{k-2}+2(k-2) \alpha^{k-3} . \end{aligned}$ |
|  | $\begin{aligned} & u_{k}=2 \alpha\left((3-k) \alpha^{k-2}+2(k-2) \alpha^{k-3}\right)-\alpha^{2}\left((4-k) \alpha^{k-3}+2(k-3) \alpha^{k-4}\right) \\ & =\alpha^{k-1}(6-2 k-4+k)+\alpha^{k-2}(4 k-8-2 k+6) \\ & =\alpha^{k-1}(2-k)+2 \alpha^{k-2}(k-1) \end{aligned}$ <br> which is the correct expression for $u_{k}$ |
|  | Hence, by induction $\mathrm{u}_{\mathrm{r}}=(2-\mathrm{r}) \alpha^{\mathrm{r}-1}+2(\mathrm{r}-1) \alpha^{\mathrm{r}-2}$ |
|  | $u_{r}-u_{r+1}=\left((2-r) \alpha^{r-1}+2(r-1) \alpha^{r-2}\right)-\left((1-r) \alpha^{r}+2 r \alpha^{r-1}\right)$ |
|  | $=\alpha^{r-2}\left(2(r-1)+(2-3 r) \alpha+(r-1) \alpha^{2}\right)$ |
|  | $\begin{aligned} & =\frac{\alpha^{r-2}}{N^{2}}\left(2 N^{2}(r-1)+(2-3 r) N(N-1)+(r-1)(N-1)^{2}\right) \\ & =\frac{\alpha^{r-2}}{N^{2}}\left((r-1)+r N-N^{2}\right) \end{aligned}$ |
|  | when $r=N, u_{N}-u_{N+1}=\frac{\alpha^{r-2}(N-1)}{N^{2}}>0$ |
|  | when $r=N-1, u_{N-1}-u_{N}=\frac{-2 \alpha^{r-2}}{N^{2}}<0$ |
|  | so $u_{r}$ is largest when $r=N$ |


| 4(i) | The straight line distance between two points must be less than the length of any other rectilinear path between the points. |
| :---: | :---: |
| 4(ii) |  |
|  | Diagram showing two circles and straight line joining their centres. Length of line and radii of circles are $a, b$ and $c$ in some order. |
|  | Either statement that the straight line is the longest of the lengths, or explanation that one circle cannot be contained inside the other. |
|  | Explanation that the circles must meet. |
| 4(iii) | (A) <br> If $a+b>c$ then $(a+1)+(b+1)>c+2>c+1$ et $c y c l$., so $a+1, b+1, c+1$ can always form the sides of a triangle. |
|  | (B) If $a=b=c=1$ we have $1,1,1$ which can form the sides of a triangle. |
|  | If $a=1, b=c=2$ we have $\frac{1}{2}, 1,2$ which cannot form the sides of a triangle. |
|  | Therefore, $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$ can sometimes, but not always form the sides of a triangle. |
|  | (C) <br> If $p \geq q \geq r$ then $\|p-q\|+\|q-r\|=p-q+q-r=p-q=\|p-r\|$ |
|  | So two of $\|p-q\|,\|q-r\|,\|p-r\|$ will always sum to the third, so they never form the sides of a triangle. |
|  | (D) If $a+b>c$ then $a^{2}+b c+b^{2}+c a=a^{2}+b^{2}-2 a b+c(a+b)+2 a b$ |
|  | $\begin{aligned} & =(a-b)^{2}+c(a+b)+2 a b>c^{2}+a b \text { et } c y c l . \\ & \text { so } a^{2}+b c, b^{2}+c a, c^{2}+a b \text { can always form the sides of a triangle. } \end{aligned}$ |
| 4(iv) | Since $a+b>a$ and $b, \frac{f(a)}{a}>\frac{f(a+b)}{a+b}$ and $\frac{f(b)}{b}>\frac{f(a+b)}{a+b}$ |
|  | Since $c<a+b, f(c)<f(a+b)$ |
|  | Thus $f(a)+f(b)>\frac{a f(a)}{a+b}+\frac{b f(b)}{a+b}=f(a+b)>f(c)$ et cycl. So $f(a), f(b)$ and $f(c)$ can form the sides of a triangle. |


| 5(i) | $x-q(x)=\sum_{r=0}^{n-1} a_{r} \times 10^{r}-\sum_{r=0}^{n-1} a_{r}=\sum_{r=0}^{n-1} a_{r} \times\left(10^{r}-1\right)$ |
| :---: | :---: |
|  | $10^{r} \geq 1 \forall r$, so $x-q(x)$ is non-negative |
|  | $9 \mid\left(10^{r}-1\right) \quad \forall r$ |
| 5(ii) | $x-44 q(x)=44(x-q(x))=43 x$ |
|  | So it is a multiple of 9 iff $43 x$ is. |
|  | $(43,9)=1$, so $x-44 q(x)$ is a multiple of 9 iff $x$ is |
|  | If $x$ has $n$ digits, $q(x) \leq 9 n$ |
|  | Since $x=44 q(x), x \leq 396 n$. <br> Any $n$ digit number must be at least $10^{n-1}$. |
|  | These inequalities cannot be simultaneously true for $n \geq 5\left(396 \times 5<10^{4}\right)$. Therefore $n \leq 4$. |
|  | Since $x-44 q(x)=0$, which is a multiple of $9, x$ is a multiple of 9 . |
|  | $q(x)$ is an integer and $x=44 q(x)$, so $x$ is a multiple of 44 . Since $(9,44)=1, x$ must be a multiple of $44 \times 9=396$. |
|  | So $x=396 k$ and therefore (by the result above) $k \leq 4$. |
|  | Checking: Only $k=2$ works. |
| 5(iii) | $x-107 q(q(x))=0=107(x-q(x))+107(q(x)-q(q(x)))-106 x$ |
|  | $(x-q(x))$ and $(q(x)-q(q(x)))$ are both divisible by 9 (by part (i)) and so $x$ is divisible by 9 |
|  | $x=107 q(q(x))$ and so is divisible by 107 , and so is divisible by 963 . So $x=963 k$ for some $k$. |
|  | If $x$ has $n$ digits, then $q(x) \leq 9 n$. By (i), $q(q(x)) \leq q(x) \leq 9 n$. So $x \leq 963 n$ and $x \geq 10^{n-1}$ which implies that $n \leq 4$ and so $k \leq 4$ |
|  | Checking: Only $k=1$ works. |


| 6(i) | $\text { Let } \mathbf{M}=\left(\begin{array}{ll} a & b \\ c & d \end{array}\right) \text {; then } \mathbf{M}^{2}=\left(\begin{array}{ll} a^{2}+b c & b(a+d) \\ c(a+d) & d^{2}+b c \end{array}\right)$ |
| :---: | :---: |
|  | so $\operatorname{Tr}\left(\mathbf{M}^{2}\right)=a^{2}+d^{2}+2 b c=(a+d)^{2}-2(a d-b c)$ |
| 6(ii) | Let $\mathbf{M}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$; then $\mathbf{M}^{2}=\left(\begin{array}{cc}a \tau-\delta & b \tau \\ c \tau & d \tau-\delta\end{array}\right)$, where $\tau=\operatorname{Tr}(\mathbf{M})$ and $\delta=\operatorname{Det}(\mathbf{M})$. |
|  | Thus $\mathbf{M}^{2}= \pm \mathbf{I} \Leftrightarrow \tau=0$ and $\delta=\mp 1$ <br> or $b=c=0$ and $a^{2}=d^{2}= \pm 1$ |
|  | If $b=c=0$ and $a=d= \pm 1$, then $\mathbf{M}= \pm \mathbf{\prime}$ |
|  | If $b=c=0$ and $a=-d= \pm 1$, then $\tau=0$ and $\delta=-1$ |
|  | Thus $\mathbf{M}^{2}=+1 \Leftrightarrow \tau=0$ and $\delta=-1$. |
|  | Thus $\mathbf{M}^{2}=\mathbf{- 1} \Leftrightarrow \tau=0$ and $\delta=+1$. |
| 6(iii) | Part (ii) implies $\operatorname{Det}\left(\mathbf{M}^{2}\right)=-1$, if $\mathbf{M}^{4}=\mathbf{l}$, but $\mathbf{M}^{2} \neq \pm \mathbf{I}$. |
|  | However, $\operatorname{Det}\left(\mathbf{M}^{2}\right)=\operatorname{Det}(\mathbf{M})^{2}$, so this is impossible. |
|  | Clearly $\mathbf{M}^{2}= \pm \mathbf{I} \Rightarrow \mathbf{M}^{4}=\mathbf{I}$ |
|  | Part (ii) implies that $\mathbf{M}^{4}=-\mathbf{I} \Leftrightarrow \operatorname{Tr}\left(\mathbf{M}^{2}\right)=0$ and $\operatorname{Det}\left(\mathbf{M}^{2}\right)=1$ |
|  | so from (i) $\Leftrightarrow \operatorname{Tr}(\mathbf{M})^{2}=2 \operatorname{Det}(\mathbf{M})$ and $\operatorname{Det}(\mathbf{M})= \pm 1$ |
|  | $\begin{aligned} & \text { so } \Leftrightarrow \operatorname{Tr}(\mathbf{M})= \pm \sqrt{2} \\ & \text { and } \operatorname{Det}(\mathbf{M})=1 . \end{aligned}$ |
|  | Any example, for instance a matrix satisfying the conditions for any of $\mathbf{M}^{2}=\mathbf{I}, \mathbf{M}^{2}=\mathbf{- I}$, $\mathbf{M}^{4}=\mathbf{- l}$, which is not a rotation or reflection. |


| 7(i) | $\|w-1\|^{2}=\left\|\frac{1-t i}{1+t i}\right\|^{2}=\frac{(1-t i)(1+t i)}{(1+t i)(1-t i)}=1$, which is independent of $t$. |
| :---: | :---: |
|  | Points on the line $\operatorname{Re}(z)=3$ have the form $z=3+t i$ and the points satisfying $\|w-1\|=1$ lie on a circle with centre 1 . |
|  | If $z=p+t i$, then $\|w-c\|^{2}=\left\|\frac{2-(p-2) c-c t i}{(p-2)+t i}\right\|^{2}=\frac{(2-(p-2) c)^{2}+c^{2} t^{2}}{(p-2)^{2}+t^{2}}$ |
|  | which is independent of $t$ when $(2-(p-2) c)^{2}=c^{2}(p-2)^{2}$ |
|  | which is when $c=\frac{1}{p-2}$. <br> Thus the circle has centre at $\frac{1}{p-2}$ and radius $\frac{1}{\|p-2\|}$ |
|  | $w=\frac{2}{(p-2)+t i}=\frac{2(p-2)-2 t i}{(p-2)^{2}+t^{2}},$ |
|  | so $\operatorname{lm}(w)>0$ when $t<0$; that is, for those $z$ on $V$ with negative imaginary part. |
| 7(ii) | If $z=t+q i$ then $\|w-c i\|^{2}=\left\|\frac{2+c q-(t-2) c i}{(t-2)+q i}\right\|^{2}=\frac{c^{2}(t-2)^{2}+(c q+2)^{2}}{(t-2)^{2}+q^{2}}$ |
|  | which is independent of $t$ when $(c q+2)^{2}=c^{2} q^{2}$ |
|  | which is when $c=-\frac{1}{q}$ so the circle has centre $-\frac{1}{q} i$ A1 and radius $\sqrt{c^{2}}=\frac{1}{\|q\|}$ A1. |
|  | $w=\frac{2}{(t-2)+q i}=\frac{2(t-2)-2 q i}{(t-2)^{2}+q^{2}},$ |
|  | so $\operatorname{Re}(w)>0$ when $t>2$; that is, for those $z$ on $H$ with real part greater than 2 . |


| 8(i) |  |
| :---: | :---: |
|  | Graph: Zeroes at $x=0, c$ and one other point ( $h$ : label not required) in ( $a, b$ ). |
|  | Graph: Turning points at $x=0, a, b, c$. |
|  | Graph: Quintic shape with curve below axis in (0,h) and above axis in (h, c) |
|  | The area conditions give $F(0)=F(c)=0$. $F^{\prime}(x)=f(x), \text { so } F^{\prime}(0)=F^{\prime}(a)=F^{\prime}(b)=F^{\prime}(c)=0$ |
|  | Since $f$ is a quartic and the coefficient of $x^{4}$ is 1 , <br> $F$ must be a quintic and the coefficient of $x^{5}$ is $\frac{1}{5}$. $F(0)=F^{\prime}(0)=0$ and $F(c)=F^{\prime}(c)=0$, so $F$ must have double roots at $x=0$ and $c$. So $F(x)$ must have the given form. <br> [Explanation must be clear that the double roots are deduced from the fact that $\mathrm{F}(\mathrm{x})=\mathrm{F}^{\prime}(\mathrm{x})=0$ at those points.] |
|  | $\begin{aligned} & F(x)+F(c-x)=\frac{1}{5} x^{2}(x-c)^{2}[(x-h)+(c-x-h)] \\ & =\frac{1}{5} x^{2}(c-x)^{2}(c-2 h) \end{aligned}$ |
| 8(ii) | Let $A$ be the (positive) area enclosed by the curve between 0 and $a$. The maximum turning point of $F(x)$ occurs at $x=b$, with $F(b)=A$. The minimum turning point of $F(x)$ occurs at $x=a$, with $F(a)=-A$. |
|  | Therefore $F(x) \geq-A$, with equality iff $x=a$. So $F(b)+F(x) \geq 0$, with equality iff $x=a$. |
|  | $F(a)+F(x) \leq 0$, with equality iff $x=b$. |
|  | Since $F(b)+F(c-b)=\frac{1}{5} b^{2}(c-b)^{2}(c-2 h)$, either $c>2 h$, or $c=2 h$ and $c-b=a$. |
|  | Also, $F(a)+F(c-a)=\frac{1}{5} a^{2}(c-a)^{2}(c-2 h)$, so either $c<2 h$, or $c=2 h$ and $c-a=b$. |
|  | Thus $c=a+b$ and $c=2 h$. |
| 8(iii) | $\begin{aligned} & F(x)=\frac{1}{10} x^{2}(x-c)^{2}(2 x-c) \\ & \text { So } f(x)=\frac{1}{5} x(x-c)\left(5 x^{2}-5 x c+c^{2}\right) \end{aligned}$ |


|  | The roots of the quadratic factor must be $a$ and $b$. |
| :--- | :--- |
|  | $f(x)=\frac{1}{5}\left(5 x^{4}-10 c x^{3}+6 c^{2} x^{2}-c^{3} x\right)$ |
|  | $f^{\prime}(x)=\frac{1}{5}\left(20 x^{3}-30 c x^{2}+12 c^{2}\right)$ |
|  | $f^{\prime \prime}(x)=\frac{1}{5}\left(60 x^{2}-60 c x+12 c^{2}\right)=\frac{12}{5}\left(5 x^{2}-5 c x+c^{2}\right)$ |
|  | Therefore $f^{\prime \prime}(x)=0$ at $x=a$ and $x=b$ and so $(a, 0)$ and $(b, 0)$ are points of inflection. |


| 9 | If the particles collide at time $t$ : <br> $V t+U t \cos \theta=d$, and <br> $h-\frac{1}{2} g t^{2}=U t \sin \theta-\frac{1}{2} g t^{2} \quad($ or $h=U t \sin \theta)$ |
| :---: | :---: |
|  | Therefore, $d \sin \theta-h \cos \theta=V t \sin \theta+U t \sin \theta \cos \theta-U t \sin \theta \cos \theta$ $=\frac{V h}{U}$ |
| 9(i) | Dividing the previous result by $d \cos \theta$ gives: $\tan \theta-\frac{h}{d}=\frac{V h}{U d \cos \theta}>0$ |
|  | Since $\tan \beta=\frac{h}{d^{\prime}} \tan \theta>\tan \beta$ and so $\theta>\beta$ |
| 9(ii) | The height of collision must be non-negative, so $U t \sin \theta-\frac{1}{2} g t^{2} \geq 0$. |
|  | $\begin{aligned} & \text { So } U \sin \theta \geq \frac{1}{2} g t=\frac{1}{2} g \frac{h}{U \sin \theta} \text { or }(U \sin \theta)^{2} \geq \frac{g h}{2} \\ & \text { Therefore } U \sin \theta \geq \sqrt{\frac{g h}{2}} . \end{aligned}$ |
| 9(iii) | $d \sin \theta-h \cos \theta$ can be written as $\sqrt{d^{2}+h^{2}} \sin (\theta-\beta)$ |
|  | So $d \sin \theta-h \cos \theta<\sqrt{d^{2}+h^{2}}$ (since $\theta>\beta$ ) |
|  | Therefore, $\frac{V h}{U}<\sqrt{d^{2}+h^{2}}$ or $\sin \beta=\frac{h}{\sqrt{d^{2}+h^{2}}}<\frac{U}{V}$ |
|  | The height at which the particles collide is: $h-\frac{1}{2} g t^{2}=h-\frac{g h^{2}}{2 U^{2} \sin ^{2} \theta}$ |
|  | $h-\frac{g h^{2}}{2 U^{2} \sin ^{2} \theta}>\frac{1}{2} h \text { iff } U^{2} \sin ^{2} \theta>g h$ |
|  | The vertical velocity of the particle fired from $B$ at the point of collision is: $U \sin \theta-g t=U \sin \theta-\frac{g h}{U \sin \theta}$ |
|  | $U \sin \theta-\frac{g h}{U \sin \theta}>0 \text { iff } U^{2} \sin ^{2} \theta>g h$ |
|  | Since both cases have the same condition: <br> The particles collide at a height greater than $\frac{1}{2} h$ if and only if the particle projected from $B$ is moving upwards at the time of collision. |
|  |  |


| 10(i) |  |
| :---: | :---: |
|  | Diagram showing necessary forces and angles |
|  | $T=\frac{\lambda(2 a \cos \alpha-l)}{l}$ |
|  | Resolving tangentially: $T \sin \alpha-m g \sin 2 \alpha=0$ |
|  | Therefore $\sin \alpha\left(\frac{\lambda}{l}(2 a \cos \alpha-l)-2 m g \cos \alpha\right)=0$ |
|  | $\begin{aligned} & \text { Since } \sin \alpha>0,2 a \lambda \cos \alpha-\lambda l-2 m g l \cos \alpha=0 \\ & \cos \alpha=\frac{\lambda l}{2(a \lambda-m g l)} \end{aligned}$ |
|  | $\cos \alpha<1$, so $\lambda l<2(a \lambda-m g l)$ Therefore $\lambda(2 a-l)>2 m g l$ |
|  | Since $2 a-l>0, \lambda>\frac{2 m g l}{2 a-l}$ |
| 10(ii) | Energy: $\frac{1}{2} m v^{2}-m g a \cos 2 \theta+\frac{\lambda}{2 l}(2 a \cos \theta-l)^{2}=\frac{1}{2} m u^{2}-m g a+\frac{\lambda}{2 l}(2 a-l)^{2}$ |
|  | If the particle comes to rest when $\theta=\beta$ : $-m g a\left(2 \cos ^{2} \beta-1\right)+\frac{\lambda}{2 l}(2 a \cos \beta-l)^{2}=\frac{1}{2} m u^{2}-m g a+\frac{\lambda}{2 l}(2 a-l)^{2}$ |
|  | $a \lambda \cos ^{2} \beta\left(\frac{2(a \lambda-m g l)}{\lambda l}\right)-2 a \lambda \cos \beta=\frac{1}{2} m u^{2}-2 m g a+\frac{2 \lambda a^{2}}{l}-2 a \lambda$ |
|  | Therefore, $\cos ^{2} \beta-2 \cos \alpha \cos \beta=\frac{m u^{2}}{2 a \lambda} \cos \alpha+1-2 \cos \alpha$ |
|  | Adding $\cos ^{2} \alpha$ to both sides: $(\cos \alpha-\cos \beta)^{2}=(1-\cos \alpha)^{2}+\frac{m u^{2}}{2 a \lambda} \cos \alpha$ |
|  | For this to occur, $\cos \beta>0$ : |
|  | $\cos ^{2} \alpha>(1-\cos \alpha)^{2}+\frac{m u^{2}}{2 a \lambda} \cos \alpha$ |
|  | And so, $u^{2}<\frac{2 a \lambda}{m}(2-\sec \alpha)$ |


| 11(i) | If the game has not ended after $2 n$ turns, then the sequence has either been $n$ repetitions of $H T$ or $n$ repetitions of $T H$. <br> So $P$ (Game has not finished after $2 n$ turns $)=2(p q)^{n}$. <br> So the probability that the game never ends is $\lim _{n \rightarrow \infty} 2(p q)^{n}=0$. |
| :---: | :---: |
|  | Sequence that follows the first $H$ will be $k$ repetitions of $T H$, followed by $H$, where $k \geq 0$. |
|  | So $P(A$ wins $\mid$ first toss is $H)=\sum_{k=0}^{\infty}(p q)^{k} p=\frac{p}{1-p q}$ |
|  | $P(A$ wins $\cap$ first toss is $H)=p \times \frac{p}{1-p q}$ |
|  | If first toss is a tail then the sequence that follows would be $k$ repetitions of $H T$ followed by $H H$. |
|  | So $P(A$ wins $\mid$ first toss is $T)=\frac{p^{2}}{1-p q}$ |
|  | $P(A \text { wins } \cap \text { first toss is } T)=\frac{p^{2} q}{1-p q}$ |
|  | Therefore $P(A$ wins $)=\frac{p^{2}(1+q)}{1-p q}$ |
| 11(ii) | Following a first toss of $H$ : <br> $A$ wins with $H H$ <br> or (HT followed by any sequence where A wins after first toss was $T$ ) <br> or ( $T$ followed by any sequence where A wins after first toss was $T$ ) |
|  | The probabilities of these cases are: $p^{2}$ <br> $p q P(A$ wins $\mid$ the first toss is a tail $)$ $q P(A$ wins \|the first toss is a tail $)$ |
|  | Therefore: <br> $P(\mathrm{~A}$ wins $\mid$ the first toss is a head $)=p^{2}+(q+p q) P(\mathrm{~A}$ wins $\mid$ the first toss is a tail $)$ |


|  | Similarly, following first toss of $T$ : <br> $A$ wins with ( $H$ followed by any sequence where A wins after first toss was H ) or (TH followed by any sequence where A wins after first toss was $H$ ) |
| :---: | :---: |
|  | Therefore: <br> $P(\mathrm{~A}$ wins $\mid$ the first toss is a tail $)=(p+p q) P(\mathrm{~A}$ wins $\mid$ the first toss is a head $)$ |
|  | $\begin{aligned} & \text { So } \\ & P(A \mid H \text { first })=p^{2}+(q+p q)(p+p q) P(A \mid H \text { first }) \\ & P(A \mid H \text { first })=\frac{p^{2}}{1-(p+p q)(q+p q)} \end{aligned}$ |
|  | And $\begin{aligned} & P(A \mid T \text { first })=(p+p q)\left(p^{2}+(q+p q) P(A \mid T \text { first })\right) \\ & P(A \mid T \text { first })=\frac{p^{2}(p+p q)}{1-(p+p q)(q+p q)} \end{aligned}$ |
|  | So $P(A \text { wins })=p \times \frac{p^{2}}{1-(p+p q)(q+p q)}+q \times \frac{p^{2}(p+p q)}{1-(p+p q)(q+p q)}=\frac{p^{2}\left(1-q^{3}\right)}{1-\left(1-p^{2}\right)\left(1-q^{2}\right)}$ |
| 11(iii) | Let $W$ be the event that $A$ wins the game. $P(W \mid H \text { first })=p^{a-1}+\left(1+p+p^{2}+\cdots+p^{a-2}\right) q P(W \mid T \text { first })$ |
|  | $P(W \mid T$ first $)=\left(1+q+q^{2}+\cdots+q^{b-2}\right) p P(W \mid H$ first $)$ |
|  | $P(W \mid H \text { first })=\frac{p^{a-1}}{1-\left(1-p^{a-1}\right)\left(1-q^{b-1}\right)}$ |
|  | $P(W \mid T \text { first })=\frac{p^{a-1}\left(1-q^{b-1}\right)}{1-\left(1-p^{a-1}\right)\left(1-q^{b-1}\right)}$ |
|  | Therefore: $P(W)=\frac{p^{a-1}\left(1-q^{b}\right)}{1-\left(1-p^{a-1}\right)\left(1-q^{b-1}\right)}$ |
|  | If $a=b=2$, <br> $P(W)=\frac{p\left(1-q^{2}\right)}{1-(1-p)(1-q)}=\frac{p^{2}(1+q)}{1-p q}$ as expected. |


| 12(i) | For the biased die: $P\left(R_{1}=R_{2}\right)=\sum_{i=1}^{n}\left(\frac{1}{n}+\varepsilon_{i}\right)^{2}$ |
| :---: | :---: |
|  | $P\left(R_{1}=R_{2}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} 1+\frac{2}{n} \sum_{i=1}^{n} \varepsilon_{i}+\sum_{i=1}^{n} \varepsilon_{i}{ }^{2}$ |
|  | $\begin{aligned} & \sum_{i=1}^{n} \varepsilon_{i}=0, \text { so } \\ & P\left(R_{1}=R_{2}\right)=\frac{1}{n}+\sum_{i=1}^{n} \varepsilon_{i}^{2} \end{aligned}$ |
|  | For a fair die, $P\left(R_{1}=R_{2}\right)=\frac{1}{n}$ and $\sum_{i=1}^{n} \varepsilon_{i}^{2}>0$, so it is more likely with the biased die. |
| (ii) | $P\left(R_{1}>R_{2}\right)=\frac{1}{2}\left(1-P\left(R_{1}=R_{2}\right)\right)$ |
|  | Therefore, the value of $P\left(R_{1}>R_{2}\right)$ if the die is possibly biased is $\leq P\left(R_{1}>R_{2}\right)$ if the die is fair. |
|  | Let $\mathrm{T}=\sum_{r=1}^{n} x_{r}$ and, for each $i$, let $p_{i}=\frac{x_{i}}{T}$ <br> Then $\sum_{i=1}^{n} p_{i}=1$, so we can construct a biased $n$-sided die with $P(X=i)=p_{i}$ |
|  | $P\left(R_{1}>R_{2}\right)=\sum_{i=2}^{n} \sum_{j=1}^{i-1} p_{i} p_{j}$ |
|  | For a fair die: $P\left(R_{1}>R_{2}\right)=\frac{n-1}{2 n}$ |
|  | Therefore $\sum_{i=2}^{n} \sum_{j=1}^{i-1} \frac{x_{i} x_{j}}{T^{2}} \leq \frac{n-1}{2 n}$ and so $\sum_{i=2}^{n} \sum_{j=1}^{i-1} x_{i} x_{j} \leq \frac{n-1}{2 n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}$ |
| (iii) | For the biased die: $P\left(R_{1}=R_{2}=R_{3}\right)=\sum_{i=1}^{n}\left(\frac{1}{n}+\varepsilon_{i}\right)^{3}$ |
|  | $=\sum_{i=1}^{n} \frac{1}{n^{3}}+\sum_{i=1}^{n} \frac{3 \varepsilon_{i}}{n^{2}}+\sum_{i=1}^{n} \frac{3 \varepsilon_{i}^{2}}{n}+\sum_{i=1}^{n} \varepsilon_{i}^{3}$ |
|  | Therefore $\begin{aligned} & P\left(R_{1}=R_{2}=R_{3} \text { biased }\right)-P\left(R_{1}=R_{2}=R_{3} \text { fair }\right)=\sum_{i=1}^{n} \frac{3 \varepsilon_{i}}{n^{2}}+\sum_{i=1}^{n} \frac{3 \varepsilon_{i}^{2}}{n}+\sum_{i=1}^{n} \varepsilon_{i}{ }^{3} \\ = & \sum_{i=1}^{n} \frac{3 \varepsilon_{i}^{2}}{n}+\sum_{i=1}^{n} \varepsilon_{i}^{3}\left(\text { since } \sum_{i=1}^{n} \varepsilon_{i}=0\right) \end{aligned}$ |
|  | $=\sum_{i=1}^{n} \frac{3 \varepsilon_{i}^{2}}{n}+\varepsilon_{i}^{3}=\sum_{i=1}^{n} \varepsilon_{i}^{2}\left(\frac{3}{n}+\varepsilon_{i}\right)$ |
|  | But $\varepsilon_{i} \geq-\frac{1}{n}$ (since $p_{i} \geq 0$ ), so this sum must be positive. |
|  | Therefore, $P\left(R_{1}=R_{2}=R_{3}\right)$ must be greater for the biased die. |

Cambridge Assessment Admissions Testing offers a range of tests to support selection and recruitment for higher education, professional organisations and governments around the world. Underpinned by robust and rigorous research, our assessments include:

- assessments in thinking skills
- admissions tests for medicine and healthcare
- behavioural styles assessment
- subject-specific admissions tests.

We are part of a not-for-profit department of the University of Cambridge.
Cambridge Assessment
Admissions Testing
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
United Kingdom

Admissions tests support:
www.admissionstestingservice.org/help

